Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newlinet2+4t+4t^2 + 4t + 4

Full solution

Q. Factor.\newlinet2+4t+4t^2 + 4t + 4
  1. Determine Approach: Determine the approach to factor the quadratic expression t2+4t+4t^2 + 4t + 4. We can use the perfect square trinomial formula: (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, since the expression resembles a perfect square trinomial.
  2. Identify Values: Identify the values of aa and bb that would make the expression a perfect square trinomial.\newlineFor the expression t2+4t+4t^2 + 4t + 4, we can see that a=ta = t and b=2b = 2 because:\newlinea2=t2a^2 = t^2\newline2ab=2×t×2=4t2ab = 2 \times t \times 2 = 4t\newlineb2=22=4b^2 = 2^2 = 4\newlineSo, t2+4t+4t^2 + 4t + 4 is in the form of a2+2ab+b2a^2 + 2ab + b^2.
  3. Factor Expression: Factor the expression using the perfect square trinomial formula.\newlineSince we have identified a=ta = t and b=2b = 2, we can write the factored form as:\newline(t+2)2(t + 2)^2\newlineThis is because (t+2)(t+2)=t2+2t+2t+4=t2+4t+4(t + 2)(t + 2) = t^2 + 2t + 2t + 4 = t^2 + 4t + 4.