Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newlinej24j^2 - 4

Full solution

Q. Factor.\newlinej24j^2 - 4
  1. Identify type and technique: Identify the type of expression and the appropriate factoring technique.\newlineThe expression j24j^2 - 4 is a difference of squares because it can be written as j222j^2 - 2^2, which fits the form a2b2a^2 - b^2.
  2. Write in a2b2a^2 - b^2 form: Write the expression in the form of a2b2a^2 - b^2.\newlinej24j^2 - 4 can be written as (j)2(2)2(j)^2 - (2)^2.
  3. Apply difference of squares formula: Apply the difference of squares formula to factor the expression.\newlineThe difference of squares formula is a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b). Here, a=ja = j and b=2b = 2.\newlineSo, (j)2(2)2=(j2)(j+2)(j)^2 - (2)^2 = (j - 2)(j + 2).
  4. Check for errors: Check the factored expression for any possible errors.\newline(j2)(j+2)(j - 2)(j + 2) when expanded should result in the original expression j24j^2 - 4.\newline(j2)(j+2)=j2+2j2j4=j24(j - 2)(j + 2) = j^2 + 2j - 2j - 4 = j^2 - 4, which is the original expression.