Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(x-8)^(5)+(x-8)^(6)
Answer:

Factor completely:\newline(x8)5+(x8)6 (x-8)^{5}+(x-8)^{6} \newlineAnswer:

Full solution

Q. Factor completely:\newline(x8)5+(x8)6 (x-8)^{5}+(x-8)^{6} \newlineAnswer:
  1. Identify Common Factor: Identify the common factor in both terms.\newlineBoth terms have a common factor of (x8)5(x-8)^5.
  2. Factor Out Common Factor: Factor out the common factor from both terms.\newlineWe can factor out (x8)5(x-8)^{5} from both terms to get (x8)5×[1+(x8)](x-8)^{5} \times [1 + (x-8)].
  3. Simplify Inside Brackets: Simplify the expression inside the brackets.\newlineSimplify the expression inside the brackets to get (x8)5×(x8+1)(x-8)^{5} \times (x-8+1).
  4. Combine Like Terms: Combine like terms inside the brackets.\newlineCombine 8-8 and +1+1 to get 7-7, so the expression becomes (x8)5(x7)(x-8)^{5} \cdot (x-7).
  5. Write Final Form: Write the final factored form.\newlineThe completely factored form of the expression is (x8)5×(x7)(x-8)^{5} \times (x-7).

More problems from Factor numerical expressions using the distributive property