Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(x+8)(2x+9)^(2)-(2x+9)(2x+7)
Answer:

Factor completely:\newline(x+8)(2x+9)2(2x+9)(2x+7) (x+8)(2 x+9)^{2}-(2 x+9)(2 x+7) \newlineAnswer:

Full solution

Q. Factor completely:\newline(x+8)(2x+9)2(2x+9)(2x+7) (x+8)(2 x+9)^{2}-(2 x+9)(2 x+7) \newlineAnswer:
  1. Recognize common factor: Recognize the common factor in both terms.\newlineThe common factor in both terms is (2x+9)(2x+9).
  2. Factor out common factor: Factor out the common factor (2x+9)(2x+9) from both terms.(2x+9)[(x+8)(2x+9)(2x+7)](2x+9)[(x+8)(2x+9)-(2x+7)]
  3. Distribute and simplify: Distribute (2x+9)(2x+9) in the first term and simplify the expression inside the brackets.\newline(2x+9)[2x2+9x+16x+72(2x+7)](2x+9)[2x^2 + 9x + 16x + 72 - (2x+7)]\newline(2x+9)[2x2+25x+722x7](2x+9)[2x^2 + 25x + 72 - 2x - 7]
  4. Combine like terms: Combine like terms inside the brackets.\newline(2x+9)(2x2+23x+65)(2x+9)(2x^2 + 23x + 65)
  5. Check for further factorization: Check if the quadratic expression 2x2+23x+652x^2 + 23x + 65 can be factored further.\newlineThe quadratic expression does not factor nicely with integer coefficients, so it is already in its simplest form.

More problems from Factor numerical expressions using the distributive property