Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

9-x^(2)y^(4)
Answer:

Factor completely.\newline9x2y4 9-x^{2} y^{4} \newlineAnswer:

Full solution

Q. Factor completely.\newline9x2y4 9-x^{2} y^{4} \newlineAnswer:
  1. Identify Expression Type: Step Title: Identify the Expression Type\newlineConcise Step Description: Recognize that the given expression is a difference of squares.\newlineCalculation: The expression 9x2y49 - x^2y^4 can be written as (3)2(xy2)2(3)^2 - (xy^2)^2.\newlineMath Error Check:
  2. Apply Formula: Step Title: Apply the Difference of Squares Formula\newlineConcise Step Description: Use the difference of squares formula, which is a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b).\newlineCalculation: Apply the formula to the expression (3)2(xy2)2(3)^2 - (xy^2)^2 to get (3xy2)(3+xy2)(3 - xy^2)(3 + xy^2).\newlineMath Error Check:
  3. Write Final Form: Step Title: Write the Final Factored Form\newlineConcise Step Description: The expression is now fully factored.\newlineCalculation: The final factored form is (3xy2)(3+xy2)(3 - xy^2)(3 + xy^2).\newlineMath Error Check: