Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(8x-7)^(2)-(2x+1)^(2)
Answer:

Factor completely:\newline(8x7)2(2x+1)2 (8 x-7)^{2}-(2 x+1)^{2} \newlineAnswer:

Full solution

Q. Factor completely:\newline(8x7)2(2x+1)2 (8 x-7)^{2}-(2 x+1)^{2} \newlineAnswer:
  1. Recognize as difference of squares: Recognize the expression as a difference of squares. The given expression is in the form of a2b2a^2 - b^2, which can be factored into (a+b)(ab)(a + b)(a - b).
  2. Identify 'a' and 'b': Identify 'a' and 'b' in the expression.\newlineIn the expression (8x7)2(2x+1)2(8x-7)^{2}-(2x+1)^{2}, 'a' is (8x7)(8x-7) and 'b' is (2x+1)(2x+1).
  3. Apply formula: Apply the difference of squares formula.\newlineUsing the formula (a2b2)=(a+b)(ab)(a^2 - b^2) = (a + b)(a - b), we get:\newline((8x7)+(2x+1))((8x7)(2x+1))((8x-7) + (2x+1))((8x-7) - (2x+1))
  4. Simplify expressions: Simplify the expressions inside the parentheses.\newlineSimplify (8x7)+(2x+1)(8x-7) + (2x+1) to get 10x610x - 6.\newlineSimplify (8x7)(2x+1)(8x-7) - (2x+1) to get 6x86x - 8.
  5. Write final factored form: Write the final factored form.\newlineThe factored form of the expression is (10x6)(6x8)(10x - 6)(6x - 8).

More problems from Factor numerical expressions using the distributive property