Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

5x^(2)+22 x+21
Answer:

Factor completely.\newline5x2+22x+21 5 x^{2}+22 x+21 \newlineAnswer:

Full solution

Q. Factor completely.\newline5x2+22x+21 5 x^{2}+22 x+21 \newlineAnswer:
  1. Identify aa, bb, cc: Identify aa, bb, and cc in the quadratic expression 5x2+22x+215x^2 + 22x + 21. Compare 5x2+22x+215x^2 + 22x + 21 with ax2+bx+cax^2 + bx + c. a=5a = 5 bb00 bb11
  2. Find two numbers: Find two numbers whose product is aca*c (521=1055*21 = 105) and whose sum is bb (2222).\newlineWe need to find two numbers that multiply to 105105 and add up to 2222.\newlineThe numbers 1515 and 77 satisfy these conditions because:\newline157=10515 * 7 = 105\newline15+7=2215 + 7 = 22
  3. Rewrite middle term: Rewrite the middle term 22x22x using the two numbers found in Step 22.5x2+22x+215x^2 + 22x + 21 can be rewritten as 5x2+15x+7x+215x^2 + 15x + 7x + 21.
  4. Factor by grouping: Factor by grouping.\newlineGroup the terms: (5x2+15x)+(7x+21)(5x^2 + 15x) + (7x + 21).\newlineFactor out the common factors from each group:\newline5x(x+3)+7(x+3)5x(x + 3) + 7(x + 3).
  5. Factor out common binomial: Factor out the common binomial factor (x+3)(x + 3). The factored form is (5x+7)(x+3)(5x + 7)(x + 3).