Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(4x+5)(2x+7)-(3x-2)(2x+7)^(2)
Answer:

Factor completely:\newline(4x+5)(2x+7)(3x2)(2x+7)2 (4 x+5)(2 x+7)-(3 x-2)(2 x+7)^{2} \newlineAnswer:

Full solution

Q. Factor completely:\newline(4x+5)(2x+7)(3x2)(2x+7)2 (4 x+5)(2 x+7)-(3 x-2)(2 x+7)^{2} \newlineAnswer:
  1. Distribute common factor: Distribute the common factor (2x+7)(2x+7) in the expression.\newlineWe notice that (2x+7)(2x+7) is a common factor in both terms of the expression. We can factor it out to simplify the expression.\newline(4x+5)(2x+7)(3x2)(2x+7)(2x+7)(4x+5)(2x+7) - (3x-2)(2x+7)(2x+7)
  2. Apply distributive property: Apply the distributive property to factor out (2x+7)(2x+7). We can write the expression as (2x+7)(2x+7) multiplied by the difference of the two terms. (2x+7)[(4x+5)(3x2)(2x+7)](2x+7)[(4x+5) - (3x-2)(2x+7)]
  3. Expand second term: Expand the second term inside the brackets.\newlineWe need to multiply (3x2)(3x-2) by (2x+7)(2x+7) to simplify the expression inside the brackets.\newline(2x+7)[(4x+5)((3x2)(2x+7))](2x+7)[(4x+5) - ((3x-2)(2x+7))]
  4. Perform multiplication: Perform the multiplication (3x2)(2x+7)(3x-2)(2x+7). We use the FOIL method to expand the product. (3x2)(2x+7)=3x(2x)+3x(7)2(2x)2(7)=6x2+21x4x14=6x2+17x14(3x-2)(2x+7) = 3x(2x) + 3x(7) - 2(2x) - 2(7) = 6x^2 + 21x - 4x - 14 = 6x^2 + 17x - 14
  5. Substitute expanded term: Substitute the expanded term back into the expression.\newlineNow we replace the expanded term in the expression.\newline(2x+7)[(4x+5)(6x2+17x14)](2x+7)[(4x+5) - (6x^2 + 17x - 14)]
  6. Distribute negative sign: Distribute the negative sign to the terms inside the brackets.\newlineWe need to subtract the entire expanded term from (4x+5)(4x+5).\newline(2x+7)[4x+56x217x+14](2x+7)[4x + 5 - 6x^2 - 17x + 14]
  7. Combine like terms: Combine like terms inside the brackets.\newlineWe combine the xx terms and the constant terms.\newline(2x+7)[6x2+(4x17x)+(5+14)](2x+7)[-6x^2 + (4x - 17x) + (5 + 14)]\newline(2x+7)[6x213x+19](2x+7)[-6x^2 - 13x + 19]
  8. Expression factored completely: The expression is now factored completely. We have factored the expression completely, and there are no common factors or further factoring that can be done. (2x+7)(6x213x+19)(2x+7)(-6x^2 - 13x + 19)

More problems from Transformations of quadratic functions