Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

44x^(2)-17x^(4)y^(2)z^(4)
Answer:

Factor completely.\newline44x217x4y2z4 44 x^{2}-17 x^{4} y^{2} z^{4} \newlineAnswer:

Full solution

Q. Factor completely.\newline44x217x4y2z4 44 x^{2}-17 x^{4} y^{2} z^{4} \newlineAnswer:
  1. Identify GCF: Step Title: Identify the Greatest Common Factor (GCF) Concise Step Description: Determine the greatest common factor of the terms in the expression. Step Calculation: The GCF of 44x244x^{2} and 17x4y2z417x^{4}y^{2}z^{4} is 11. Step Output: GCF: 11
  2. Recognize Negative Factor: Step Title: Recognize the Negative Common Factor\newlineConcise Step Description: Since the second term has a negative coefficient, we can factor out 1-1 to simplify the expression.\newlineStep Calculation: Factoring out 1-1 from the second term to make the leading coefficient positive.\newlineStep Output: 1(44x2+17x4y2z4)-1(-44x^{2} + 17x^{4}y^{2}z^{4})
  3. Factor Expression: Step Title: Factor the Expression\newlineConcise Step Description: Factor the expression inside the parentheses by recognizing it as a difference of squares.\newlineStep Calculation: The expression 44x2+17x4y2z4-44x^{2} + 17x^{4}y^{2}z^{4} can be written as a difference of squares: (ax)2(byz)2(ax)^{2} - (byz)^{2}, where a2=44a^{2} = 44, b2=17b^{2} = 17, x2=x4x^{2} = x^{4}, y2=y2y^{2} = y^{2}, and z2=z4z^{2} = z^{4}.\newlineStep Output: 1((44x)2(17x2yz2)2)-1((\sqrt{44}x)^{2} - (\sqrt{17}x^{2}yz^{2})^{2})
  4. Apply Difference of Squares: Step Title: Apply the Difference of Squares Formula\newlineConcise Step Description: Use the difference of squares formula, which is a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b), to factor the expression.\newlineStep Calculation: Factoring the expression using the difference of squares formula gives us 1(44x17x2yz2)(44x+17x2yz2)-1(\sqrt{44x} - \sqrt{17x^{2}yz^{2}})(\sqrt{44x} + \sqrt{17x^{2}yz^{2}}).\newlineStep Output: 1(44x17x2yz2)(44x+17x2yz2)-1(\sqrt{44x} - \sqrt{17x^{2}yz^{2}})(\sqrt{44x} + \sqrt{17x^{2}yz^{2}})
  5. Simplify Square Roots: Step Title: Simplify the Square Roots\newlineConcise Step Description: Simplify the square roots in the factored expression.\newlineStep Calculation: 44=(411)=211\sqrt{44} = \sqrt{(4\cdot11)} = 2\sqrt{11} and 17x2=x17\sqrt{17x^{2}} = x\sqrt{17}, so the factored expression becomes 1(211xx17yz2)(211x+x17yz2)-1(2\sqrt{11}x - x\sqrt{17}yz^{2})(2\sqrt{11}x + x\sqrt{17}yz^{2}).\newlineStep Output: 1(211xx17yz2)(211x+x17yz2)-1(2\sqrt{11}x - x\sqrt{17}yz^{2})(2\sqrt{11}x + x\sqrt{17}yz^{2})
  6. Factor Out Common x Term: Step Title: Factor Out the Common x Term\newlineConcise Step Description: Factor out the common x term from the factored expression.\newlineStep Calculation: Factoring out xx from both terms in each binomial gives us 1x(21117yz2)x(211+17yz2)-1x(2\sqrt{11} - \sqrt{17}y z^{2})x(2\sqrt{11} + \sqrt{17}y z^{2}).\newlineStep Output: 1x(21117yz2)x(211+17yz2)-1x(2\sqrt{11} - \sqrt{17}y z^{2})x(2\sqrt{11} + \sqrt{17}y z^{2})
  7. Combine x Terms: Step Title: Combine the x Terms\newlineConcise Step Description: Combine the x terms into x2x^2.\newlineStep Calculation: Combining the x terms gives us x2(21117yz2)(211+17yz2)-x^2(2\sqrt{11} - \sqrt{17}yz^{2})(2\sqrt{11} + \sqrt{17}yz^{2}).\newlineStep Output: x2(21117yz2)(211+17yz2)-x^2(2\sqrt{11} - \sqrt{17}yz^{2})(2\sqrt{11} + \sqrt{17}yz^{2})