Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

3x^(2)+22 x+7
Answer:

Factor completely.\newline3x2+22x+7 3 x^{2}+22 x+7 \newlineAnswer:

Full solution

Q. Factor completely.\newline3x2+22x+7 3 x^{2}+22 x+7 \newlineAnswer:
  1. Identify aa, bb, cc: Identify aa, bb, and cc in the quadratic expression 3x2+22x+73x^2 + 22x + 7. Compare 3x2+22x+73x^2 + 22x + 7 with ax2+bx+cax^2 + bx + c. a=3a = 3 bb00 bb11
  2. Find product and sum: Find two numbers whose product is aca*c (37=213*7 = 21) and whose sum is bb (2222).\newlineWe need to find two numbers that multiply to 2121 and add up to 2222.\newlineThe numbers 11 and 2121 satisfy these conditions.\newline121=211 * 21 = 21\newline1+21=221 + 21 = 22
  3. Rewrite middle term: Rewrite the middle term 22x22x using the two numbers found in Step 22.\newline3x2+22x+73x^2 + 22x + 7 can be rewritten as 3x2+x+21x+73x^2 + x + 21x + 7.
  4. Factor by grouping: Factor by grouping.\newlineGroup the terms: 3x2+x3x^2 + x + 21x+721x + 7.\newlineFactor out the greatest common factor from each group.\newlineFrom the first group, we can factor out xx: x(3x+1)x(3x + 1).\newlineFrom the second group, we can factor out 77: 7(3x+1)7(3x + 1).
  5. Factor common binomial: Factor out the common binomial factor.\newlineWe now have x(3x+1)+7(3x+1)x(3x + 1) + 7(3x + 1).\newlineThe common binomial factor is (3x+1)(3x + 1).\newlineThe factored form is (3x+1)(x+7)(3x + 1)(x + 7).