Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(3x+2)^(2)(3x-8)+(3x+2)(3x+10)
Answer:

Factor completely:\newline(3x+2)2(3x8)+(3x+2)(3x+10) (3 x+2)^{2}(3 x-8)+(3 x+2)(3 x+10) \newlineAnswer:

Full solution

Q. Factor completely:\newline(3x+2)2(3x8)+(3x+2)(3x+10) (3 x+2)^{2}(3 x-8)+(3 x+2)(3 x+10) \newlineAnswer:
  1. Identify Common Factors: Step Title: Identify Common Factors\newlineConcise Step Description: Look for common factors in each term of the expression.\newlineStep Calculation: The common factor in both terms is (3x+2)(3x+2).\newlineStep Output: Common factor: (3x+2)(3x+2)
  2. Factor Out Common Factor: Step Title: Factor Out the Common Factor\newlineConcise Step Description: Factor out the common factor (3x+2)(3x+2) from the expression.\newlineStep Calculation: Factoring out (3x+2)(3x+2) gives us (3x+2)[(3x+2)(3x8)+(3x+10)](3x+2)[(3x+2)(3x-8)+(3x+10)].\newlineStep Output: Factored expression: (3x+2)[(3x+2)(3x8)+(3x+10)](3x+2)[(3x+2)(3x-8)+(3x+10)]
  3. Distribute and Combine Terms: Step Title: Distribute and Combine Like Terms\newlineConcise Step Description: Distribute the (3x+2)(3x+2) term across the expression inside the brackets and combine like terms.\newlineStep Calculation: Distributing gives us (3x+2)[(3x+2)(3x8)+1(3x+10)](3x+2)[(3x+2)(3x-8)+1(3x+10)]. Expanding the terms inside the brackets gives us (3x+2)(9x224x+6x16+3x+10)(3x+2)(9x^2 - 24x + 6x - 16 + 3x + 10).\newlineStep Output: Expanded expression: (3x+2)(9x215x6)(3x+2)(9x^2 - 15x - 6)