Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

27s^(6)-8h^(6)
Answer:

Factor completely:\newline27s68h6 27 s^{6}-8 h^{6} \newlineAnswer:

Full solution

Q. Factor completely:\newline27s68h6 27 s^{6}-8 h^{6} \newlineAnswer:
  1. Identify Expression Type: Step Title: Identify the Type of Expression\newlineConcise Step Description: Recognize that the expression is a difference of two cubes.\newlineStep Calculation: The expression 27s68h627s^6 - 8h^6 can be rewritten as (3s2)3(2h2)3(3s^2)^3 - (2h^2)^3.
  2. Apply Cubes Formula: Step Title: Apply the Difference of Cubes Formula\newlineConcise Step Description: Use the formula a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2) to factor the expression.\newlineStep Calculation: Let a=3s2a = 3s^2 and b=2h2b = 2h^2. Then, apply the formula to get (3s22h2)((3s2)2+(3s2)(2h2)+(2h2)2)(3s^2 - 2h^2)((3s^2)^2 + (3s^2)(2h^2) + (2h^2)^2).
  3. Simplify Factored Expression: Step Title: Simplify the Factored Expression\newlineConcise Step Description: Simplify the terms inside the second set of parentheses.\newlineStep Calculation: Simplify to get (3s22h2)(9s4+6s2h2+4h4)(3s^2 - 2h^2)(9s^4 + 6s^2h^2 + 4h^4).