Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

16y^(6)-81x^(4)
Answer:

Factor completely.\newline16y681x4 16 y^{6}-81 x^{4} \newlineAnswer:

Full solution

Q. Factor completely.\newline16y681x4 16 y^{6}-81 x^{4} \newlineAnswer:
  1. Identify Structure: Identify the structure of the expression 16y681x416y^{6} - 81x^{4}. This expression is a difference of two squares because both terms are perfect squares. 16y6=(4y3)216y^{6} = (4y^{3})^2 81x4=(9x2)281x^{4} = (9x^{2})^2 So, 16y681x416y^{6} - 81x^{4} can be written as (4y3)2(9x2)2(4y^{3})^2 - (9x^{2})^2.
  2. Apply Formula: Apply the difference of squares formula to factor the expression.\newlineThe difference of squares formula is a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b).\newlineHere, a=4y3a = 4y^{3} and b=9x2b = 9x^{2}.\newlineUsing the formula, we get (4y3)2(9x2)2=(4y39x2)(4y3+9x2)(4y^{3})^2 - (9x^{2})^2 = (4y^{3} - 9x^{2})(4y^{3} + 9x^{2}).
  3. Write Factored Form: Write down the factored form of the expression.\newlineThe factored form of 16y681x416y^{6} - 81x^{4} is (4y39x2)(4y3+9x2)(4y^{3} - 9x^{2})(4y^{3} + 9x^{2}).