Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

12x^(4)z^(3)+49 xyz^(7)
Answer:

Factor completely.\newline12x4z3+49xyz7 12 x^{4} z^{3}+49 x y z^{7} \newlineAnswer:

Full solution

Q. Factor completely.\newline12x4z3+49xyz7 12 x^{4} z^{3}+49 x y z^{7} \newlineAnswer:
  1. Identify Common Factor: Step Title: Identify the Common Factor\newlineConcise Step Description: Identify the greatest common factor (GCF) that can be factored out from both terms of the expression.\newlineStep Calculation: The GCF of 12x4z312x^{4}z^{3} and 49xyz749xyz^{7} is xyz3xyz^{3}.\newlineStep Output: GCF: xyz3xyz^{3}
  2. Factor Out GCF: Step Title: Factor Out the GCF\newlineConcise Step Description: Factor out the GCF from the given expression.\newlineStep Calculation: Factoring out xyz3xyz^{3} from 12x4z3+49xyz712x^{4}z^{3}+49xyz^{7} gives xyz3(12x3+49z4)xyz^{3}(12x^{3}+49z^{4}).\newlineStep Output: Factored Expression: xyz3(12x3+49z4)xyz^{3}(12x^{3}+49z^{4})
  3. Check Further Factoring: Step Title: Check for Further Factoring\newlineConcise Step Description: Check if the remaining expression inside the parentheses can be factored further.\newlineStep Calculation: The expression inside the parentheses, 12x3+49z412x^{3}+49z^{4}, does not have any common factors and is not a special polynomial that can be factored further (such as a difference of squares or a perfect square trinomial).\newlineStep Output: The expression inside the parentheses cannot be factored further.