Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

1-8x^(3)
Answer:

Factor completely:\newline18x3 1-8 x^{3} \newlineAnswer:

Full solution

Q. Factor completely:\newline18x3 1-8 x^{3} \newlineAnswer:
  1. Recognize Cubic Expression: Recognize the expression 18x31 - 8x^3 as a difference of cubes.\newlineA difference of cubes can be factored using the formula a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2).\newlineHere, 11 can be written as 131^3 and 8x38x^3 can be written as (2x)3(2x)^3.
  2. Apply Difference of Cubes Formula: Apply the difference of cubes formula.\newlineLet a=1a = 1 and b=2xb = 2x.\newlineThe factored form will be (12x)(12+12x+(2x)2)(1 - 2x)(1^2 + 1\cdot2x + (2x)^2).
  3. Simplify Factored Form: Simplify the factored form.\newlineSimplify the second term (12+12x+(2x)2)(1^2 + 1\cdot2x + (2x)^2) to (1+2x+4x2)(1 + 2x + 4x^2).\newlineThe fully factored form is (12x)(1+2x+4x2)(1 - 2x)(1 + 2x + 4x^2).