Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline9x224x+169x^2 - 24x + 16

Full solution

Q. Factor.\newline9x224x+169x^2 - 24x + 16
  1. Check Factoring Possibility: Determine if the quadratic can be factored using the form (ax)22abx+b2=(axb)2(ax)^2 - 2abx + b^2 = (ax - b)^2.\newlineThe given quadratic is 9x224x+169x^2 - 24x + 16. We need to check if there are numbers aa and bb such that (ax)2=9x2(ax)^2 = 9x^2, 2abx=24x-2abx = -24x, and b2=16b^2 = 16.
  2. Find a and b: Find the values of a and b.\newlineFor (ax)2=9x2(ax)^2 = 9x^2, we have a=3a = 3 because (3x)2=9x2(3x)^2 = 9x^2.\newlineFor b2=16b^2 = 16, we have b=4b = 4 because 42=164^2 = 16.\newlineNow we check if 2abx=24x-2abx = -24x with a=3a = 3 and b=4b = 4.\newline2×3×4×x=24x-2 \times 3 \times 4 \times x = -24x, which is true.
  3. Write Factored Form: Write the factored form using the values of aa and bb. The factored form is (axb)2=(3x4)2(ax - b)^2 = (3x - 4)^2.