Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline9r212r+49r^2 - 12r + 4

Full solution

Q. Factor.\newline9r212r+49r^2 - 12r + 4
  1. Identify Form: Identify the form of the quadratic trinomial. 9r212r+49r^2 - 12r + 4 represents the form a22ab+b2a^2 - 2ab + b^2.
  2. Rewrite Quadratic: Rewrite 9r29r^2 in the form of a2a^2. \newline32=93^2 = 9\newline9r2=(3r)29r^2 = (3r)^2
  3. Identify Values: Rewrite 44 in the form of b2b^2. \newline22=42^2 = 4
  4. Substitute Values: We found:\newline9r2=(3r)29r^2 = (3r)^2\newline4=224 = 2^2\newlineIdentify the values of aa and bb.\newlineCompare (3r)2(3r)^2 with a2a^2 and 222^2 with b2b^2.\newlinea=3ra = 3r\newlineb=2b = 2
  5. Equivalent Expression: We found:\newline9r212r+49r^2 - 12r + 4 represents the form a22ab+b2a^2 - 2ab + b^2.\newlineIdentify the equivalent expression after substituting the values of aa and bb.\newlineSubstitute the values of aa and bb in a22ab+b2a^2 - 2ab + b^2\newlineEquivalent expression: (3r)22×(3r)×(2)+22(3r)^2 - 2 \times (3r) \times (2) + 2^2
  6. Write Factored Form: Write the factored form of the expression 9r212r+49r^2 - 12r + 4.\newlinea22ab+b2=(ab)2a^2 - 2ab + b^2 = (a - b)^2\newline9r212r+4=(3r2)29r^2 - 12r + 4 = (3r - 2)^2\newlineFactored form: (3r2)2(3r - 2)^2