Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline9q2+12q+49q^2 + 12q + 4

Full solution

Q. Factor.\newline9q2+12q+49q^2 + 12q + 4
  1. Check Perfect Square Trinomial: Determine if the quadratic expression can be factored using the perfect square trinomial formula.\newlineA perfect square trinomial is in the form (a2+2ab+b2)(a^2 + 2ab + b^2) which factors to (a+b)2(a + b)^2.\newlineWe can check if 9q2+12q+49q^2 + 12q + 4 is a perfect square trinomial by identifying a2a^2, 2ab2ab, and b2b^2 in the expression.\newline9q29q^2 is a perfect square since (3q)2=9q2(3q)^2 = 9q^2.\newline44 is a perfect square since 22=42^2 = 4.\newlineThe middle term, (a+b)2(a + b)^200, should be equal to 2ab2ab, where (a+b)2(a + b)^222 and (a+b)2(a + b)^233.\newlineLet's check if (a+b)2(a + b)^244: (a+b)2(a + b)^255.\newlineSince all conditions for a perfect square trinomial are met, we can proceed to factor it.
  2. Identify Factors: Factor the perfect square trinomial using the formula (a+b)2(a + b)^2. Since we have identified a=3qa = 3q and b=2b = 2, we can write the expression as (3q+2)2(3q + 2)^2. Therefore, the factored form of 9q2+12q+49q^2 + 12q + 4 is (3q+2)(3q+2)(3q + 2)(3q + 2) or (3q+2)2(3q + 2)^2.