Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline8u38u2+9u98u^3 - 8u^2 + 9u - 9

Full solution

Q. Factor.\newline8u38u2+9u98u^3 - 8u^2 + 9u - 9
  1. Identify Common Factors: Look for common factors in pairs of terms.\newlineWe will first look at the terms 8u38u^3 and 8u2-8u^2 to see if there is a common factor, and then we will do the same for 9u9u and 9-9.
  2. Factor Out Common Factor (11st Pair): Factor out the common factor from the first pair of terms.\newlineThe common factor in 8u38u^3 and 8u2-8u^2 is 8u28u^2.\newline8u38u2=8u2(u1)8u^3 - 8u^2 = 8u^2(u - 1)
  3. Factor Out Common Factor (22nd Pair): Factor out the common factor from the second pair of terms.\newlineThe common factor in 9u9u and 9-9 is 99.\newline9u9=9(u1)9u - 9 = 9(u - 1)
  4. Write Down Findings: Write down what we have found so far.\newlineWe have:\newline8u38u2=8u2(u1)8u^3 - 8u^2 = 8u^2(u - 1)\newline9u9=9(u1)9u - 9 = 9(u - 1)\newlineNow, we rewrite the original expression using these factored forms:\newline8u38u2+9u9=8u2(u1)+9(u1)8u^3 - 8u^2 + 9u - 9 = 8u^2(u - 1) + 9(u - 1)
  5. Factor Out Common Binomial Factor: Factor out the common binomial factor.\newlineWe can see that (u1)(u - 1) is a common factor in both terms.\newline8u2(u1)+9(u1)=(8u2+9)(u1)8u^2(u - 1) + 9(u - 1) = (8u^2 + 9)(u - 1)