Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline7v314v25v+107v^3 - 14v^2 - 5v + 10

Full solution

Q. Factor.\newline7v314v25v+107v^3 - 14v^2 - 5v + 10
  1. Look for common factors: Look for common factors in pairs of terms.\newlineWe will first look at the pairs of terms to see if there are any common factors. We will start with the first two terms, 7v37v^3 and 14v2-14v^2, and then the last two terms, 5v-5v and +10+10.\newlineFor the first pair, we can factor out a 7v27v^2:\newline7v314v2=7v2(v2)7v^3 - 14v^2 = 7v^2(v - 2)\newlineFor the second pair, we can factor out a 5-5:\newline5v+10=5(v2)-5v + 10 = -5(v - 2)
  2. Rewrite with factored pairs: Rewrite the polynomial with the factored pairs.\newlineNow we rewrite the original polynomial using the factored pairs from Step 11:\newline7v314v25v+10=7v2(v2)5(v2)7v^3 - 14v^2 - 5v + 10 = 7v^2(v - 2) - 5(v - 2)
  3. Factor out common binomial: Factor out the common binomial factor.\newlineWe notice that (v2)(v - 2) is a common factor in both terms:\newline7v2(v2)5(v2)7v^2(v - 2) - 5(v - 2)\newlineWe can factor out (v2)(v - 2) from the expression:\newline(v2)(7v25)(v - 2)(7v^2 - 5)
  4. Check for further factoring: Check for further factoring.\newlineThe term 7v257v^2 - 5 does not have any common factors and cannot be factored further since 77 and 55 are prime numbers and there is no vv term in 5-5 to factor out with 7v27v^2.\newlineSo, the factored form of the polynomial is:\newline(v2)(7v25)(v - 2)(7v^2 - 5)