Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline7q2+10q+37q^2 + 10q + 3

Full solution

Q. Factor.\newline7q2+10q+37q^2 + 10q + 3
  1. Identify aa, bb, cc: Identify aa, bb, and cc in the quadratic expression 7q2+10q+37q^2 + 10q + 3. Compare 7q2+10q+37q^2 + 10q + 3 with ax2+bx+cax^2 + bx + c. a=7a = 7 bb00 bb11
  2. Find numbers multiply add: Find two numbers that multiply to aca*c (73=217*3 = 21) and add up to bb (1010).\newlineWe need to find two numbers that multiply to 2121 and add up to 1010.\newlineThe numbers 77 and 33 satisfy these conditions because 73=217*3 = 21 and 7+3=107+3 = 10.
  3. Rewrite middle term: Rewrite the middle term 10q10q using the two numbers found in Step 22.\newlineWe can express 10q10q as 7q+3q7q + 3q.\newlineSo, 7q2+10q+37q^2 + 10q + 3 becomes 7q2+7q+3q+37q^2 + 7q + 3q + 3.
  4. Factor by grouping: Factor by grouping.\newlineGroup the terms into two pairs: 7q2+7q7q^2 + 7q and 3q+33q + 3.\newlineFactor out the greatest common factor from each pair.\newlineFrom the first pair, we can factor out 7q7q: 7q(q+1)7q(q + 1).\newlineFrom the second pair, we can factor out 33: 3(q+1)3(q + 1).
  5. Write factored form: Write the factored form of the expression.\newlineSince both groups contain the factor (q+1)(q + 1), we can factor this out.\newlineThe factored form is (7q+3)(q+1)(7q + 3)(q + 1).