Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline7f2+10f+37f^2 + 10f + 3

Full solution

Q. Factor.\newline7f2+10f+37f^2 + 10f + 3
  1. Identify aa, bb, cc: Identify aa, bb, and cc in the quadratic expression 7f2+10f+37f^2 + 10f + 3. Compare 7f2+10f+37f^2 + 10f + 3 with the standard form ax2+bx+cax^2 + bx + c. a=7a = 7 bb00 bb11
  2. Find numbers multiply add: Find two numbers that multiply to aca*c (73=217*3=21) and add up to bb (1010).\newlineWe need to find two numbers that multiply to 2121 and add up to 1010.\newlineAfter checking possible pairs of factors of 2121 (11 and 2121, 33 and 73=217*3=2100), we find that 11 and 2121 do not add up to 1010, but 33 and 73=217*3=2100 do.\newlineSo, the two numbers are 33 and 73=217*3=2100.
  3. Rewrite middle term: Rewrite the middle term 10f10f using the two numbers found in Step 22.\newlineWe can express 10f10f as 3f+7f3f + 7f.\newlineSo, 7f2+10f+37f^2 + 10f + 3 becomes 7f2+3f+7f+37f^2 + 3f + 7f + 3.
  4. Factor by grouping: Factor by grouping.\newlineNow we group the terms: 7f2+3f7f^2 + 3f + 7f+37f + 3.\newlineFactor out the greatest common factor from each group.\newlineFrom 7f2+3f7f^2 + 3f, we can factor out ff, giving us f(7f+3)f(7f + 3).\newlineFrom 7f+37f + 3, we can factor out 11, giving us 1(7f+3)1(7f + 3).
  5. Factor common binomial: Factor out the common binomial factor.\newlineWe now have f(7f+3)+1(7f+3)f(7f + 3) + 1(7f + 3).\newlineThe common binomial factor is (7f+3)(7f + 3).\newlineFactoring out (7f+3)(7f + 3) gives us (7f+3)(f+1)(7f + 3)(f + 1).