Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline5n2+9n+45n^2 + 9n + 4

Full solution

Q. Factor.\newline5n2+9n+45n^2 + 9n + 4
  1. Identify aa, bb, cc: Identify aa, bb, and cc in the quadratic expression 5n2+9n+45n^2 + 9n + 4. Compare 5n2+9n+45n^2 + 9n + 4 with ax2+bx+cax^2 + bx + c. a=5a = 5 bb00 bb11
  2. Find numbers multiply add: Find two numbers that multiply to aca*c (54=205*4=20) and add up to bb (99).\newlineWe need to find two numbers that multiply to 2020 and add up to 99.\newlineAfter checking possible pairs that multiply to 2020 (11 and 2020, 22 and 54=205*4=2000, 54=205*4=2011 and 54=205*4=2022), we find that 11 and 2020 do not add up to 99, 22 and 54=205*4=2000 do not add up to 99, but 54=205*4=2011 and 54=205*4=2022 do add up to 99.\newlineSo the two numbers are 54=205*4=2011 and 54=205*4=2022.
  3. Rewrite middle term: Rewrite the middle term 9n9n using the two numbers found in Step 22.5n2+9n+45n^2 + 9n + 4 can be rewritten as 5n2+4n+5n+45n^2 + 4n + 5n + 4.
  4. Factor by grouping: Factor by grouping.\newlineGroup the first two terms and the last two terms:\newline(5n2+4n)+(5n+4)(5n^2 + 4n) + (5n + 4)\newlineFactor out the common factor from each group:\newlinen(5n+4)+1(5n+4)n(5n + 4) + 1(5n + 4)
  5. Factor out common binomial: Factor out the common binomial factor.\newlineSince both groups contain the factor (5n+4)(5n + 4), we can factor it out:\newline(5n+4)(n+1)(5n + 4)(n + 1)