Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline4y24y+14y^2 - 4y + 1

Full solution

Q. Factor.\newline4y24y+14y^2 - 4y + 1
  1. Check Perfect Square Trinomial: Determine if the quadratic can be factored using the perfect square trinomial formula.\newlineA perfect square trinomial is in the form (a2±2ab+b2)=(a±b)2(a^2 \pm 2ab + b^2) = (a \pm b)^2. We need to check if 4y24y+14y^2 - 4y + 1 fits this pattern.\newline4y24y^2 can be written as (2y)2(2y)^2, and 11 can be written as (1)2(1)^2. The middle term, 4y-4y, should be equal to 2(2y)(1)2\cdot(2y)\cdot(1) for it to be a perfect square trinomial.\newlineLet's check: 2(2y)(1)=4y2\cdot(2y)\cdot(1) = 4y, which is the negative of the middle term in our expression.\newlineSo, 4y24y+14y^2 - 4y + 1 is a perfect square trinomial.
  2. Factor Perfect Square Trinomial: Factor the perfect square trinomial.\newlineSince we have established that 4y24y+14y^2 - 4y + 1 is a perfect square trinomial, we can write it as (2y1)2(2y - 1)^2.\newlineThis is because (2y)2(2y)^2 gives us the first term 4y24y^2, 2×(2y)×(1)-2\times(2y)\times(1) gives us the middle term 4y-4y, and (1)2(1)^2 gives us the last term +1+1.\newlineTherefore, the factored form of 4y24y+14y^2 - 4y + 1 is (2y1)(2y1)(2y - 1)(2y - 1) or (2y1)2(2y - 1)^2.