Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline4x24x+14x^2 - 4x + 1

Full solution

Q. Factor.\newline4x24x+14x^2 - 4x + 1
  1. Check for Perfect Square Trinomial: Determine if the quadratic can be factored as a perfect square trinomial. A perfect square trinomial is in the form (ax)22abx+b2(ax)^2 - 2abx + b^2, which factors to (axb)2(ax - b)^2. Here, 4x2=(2x)24x^2 = (2x)^2 and 1=121 = 1^2. The middle term should be 2abx=2(2x)(1)=4x-2abx = -2(2x)(1) = -4x. Since the given expression is 4x24x+14x^2 - 4x + 1, it matches the form of a perfect square trinomial.
  2. Factor using Pattern: Factor the expression using the perfect square trinomial pattern.\newlineThe expression 4x24x+14x^2 - 4x + 1 can be factored as (2x1)2(2x - 1)^2 because (2x)22(2x)(1)+12=4x24x+1(2x)^2 - 2(2x)(1) + 1^2 = 4x^2 - 4x + 1.