Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline3y3+2y2+15y+103y^3 + 2y^2 + 15y + 10

Full solution

Q. Factor.\newline3y3+2y2+15y+103y^3 + 2y^2 + 15y + 10
  1. Group Terms: Look for common factors in pairs of terms.\newlineWe will group the terms into two pairs and look for common factors in each pair.\newlineGroup 11: 3y3+2y23y^3 + 2y^2\newlineGroup 22: 15y+1015y + 10
  2. Factor First Group: Factor out the greatest common factor from the first group.\newlineThe greatest common factor of 3y33y^3 and 2y22y^2 is y2y^2.\newlineSo, 3y3+2y2=y2(3y+2)3y^3 + 2y^2 = y^2(3y + 2)
  3. Factor Second Group: Factor out the greatest common factor from the second group.\newlineThe greatest common factor of 15y15y and 1010 is 55.\newlineSo, 15y+10=5(3y+2)15y + 10 = 5(3y + 2)
  4. Write Factored Groups: Write the expression with the factored groups.\newlineNow we have:\newliney2(3y+2)+5(3y+2)y^2(3y + 2) + 5(3y + 2)
  5. Factor Common Binomial: Factor out the common binomial factor.\newlineBoth terms have a common factor of (3y+2)(3y + 2).\newlineSo, y2(3y+2)+5(3y+2)=(y2+5)(3y+2)y^2(3y + 2) + 5(3y + 2) = (y^2 + 5)(3y + 2)