Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline2j2+9j+102j^2 + 9j + 10

Full solution

Q. Factor.\newline2j2+9j+102j^2 + 9j + 10
  1. Identify aa, bb, cc: Identify aa, bb, and cc in the quadratic expression 2j2+9j+102j^2 + 9j + 10. Compare 2j2+9j+102j^2 + 9j + 10 with ax2+bx+cax^2 + bx + c. a=2a = 2 bb00 bb11
  2. Find two numbers: Find two numbers that multiply to aca*c (which is 210=202*10 = 20) and add up to bb (which is 99).\newlineThe two numbers that satisfy these conditions are 55 and 44, because:\newline5×4=205 \times 4 = 20\newline5+4=95 + 4 = 9
  3. Rewrite middle term: Rewrite the middle term of the quadratic expression using the two numbers found in Step 22.\newline2j2+9j+102j^2 + 9j + 10 can be written as 2j2+5j+4j+102j^2 + 5j + 4j + 10.
  4. Factor by grouping: Factor by grouping.\newlineGroup the terms into two pairs: 2j2+5j2j^2 + 5j and 4j+104j + 10.\newlineFactor out the greatest common factor from each pair.\newlineFrom the first pair, factor out jj: j(2j+5)j(2j + 5).\newlineFrom the second pair, factor out 44: 4(2j+5)4(2j + 5).
  5. Write factored form: Write the factored form of the expression.\newlineSince both groups contain the common factor (2j+5)(2j + 5), factor this out:\newlinej(2j+5)+4(2j+5)=(j+4)(2j+5)j(2j + 5) + 4(2j + 5) = (j + 4)(2j + 5).