Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline25x240x+1625x^2 - 40x + 16

Full solution

Q. Factor.\newline25x240x+1625x^2 - 40x + 16
  1. Check Pattern: Determine if the quadratic expression can be factored using the perfect square trinomial formula.\newlineA perfect square trinomial is in the form (ax)22abx+b2(ax)^2 - 2abx + b^2, which factors to (axb)2(ax - b)^2.\newlineCheck if 25x240x+1625x^2 - 40x + 16 fits this pattern.\newline25x225x^2 can be written as (5x)2(5x)^2, and 1616 can be written as 424^2.\newlineThe middle term, 40x-40x, should be equal to 2×5x×42 \times 5x \times 4 if it fits the pattern.\newlineCalculate 2×5x×4=40x2 \times 5x \times 4 = 40x, which matches the middle term except for the sign.
  2. Factor Expression: Factor the expression using the perfect square trinomial formula.\newlineSince the expression fits the pattern of a perfect square trinomial, we can write it as:\newline(5x)22×5x×4+42(5x)^2 - 2 \times 5x \times 4 + 4^2\newlineThis simplifies to:\newline(5x4)2(5x - 4)^2