Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline25x210x+125x^2 - 10x + 1

Full solution

Q. Factor.\newline25x210x+125x^2 - 10x + 1
  1. Check Perfect Square Trinomial: Determine if the quadratic can be factored using the perfect square trinomial formula.\newlineA perfect square trinomial is in the form (ax)22abx+b2(ax)^2 - 2abx + b^2, which factors to (axb)2(ax - b)^2.\newlineCheck if 25x210x+125x^2 - 10x + 1 fits this pattern.\newline25x225x^2 can be written as (5x)2(5x)^2, and 11 can be written as 121^2.\newlineThe middle term, 10x-10x, should be equal to 22 times the product of the square roots of the first and last terms if it's a perfect square trinomial.\newline2×5x×1=10x2 \times 5x \times 1 = 10x, which matches the middle term except for the sign.\newlineSo, 25x210x+125x^2 - 10x + 1 is a perfect square trinomial.
  2. Factor Trinomial: Factor the perfect square trinomial.\newlineSince we have identified that 25x210x+125x^2 - 10x + 1 is a perfect square trinomial, it can be factored as:\newline(5x)22×5x×1+12=(5x1)2(5x)^2 - 2 \times 5x \times 1 + 1^2 = (5x - 1)^2