Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline16k3+8k2+2k+116k^3 + 8k^2 + 2k + 1

Full solution

Q. Factor.\newline16k3+8k2+2k+116k^3 + 8k^2 + 2k + 1
  1. Identify GCF: Step Title: Identify the Greatest Common Factor (GCF)\newlineConcise Step Description: Determine if there is a greatest common factor that can be factored out from all terms of the polynomial.\newlineStep Calculation: The GCF of 16k316k^3, 8k28k^2, 2k2k, and 11 is 11.\newlineStep Output: GCF: 11
  2. Check Quadratic Form: Step Title: Check for a Quadratic Form\newlineConcise Step Description: Check if the polynomial can be written in a quadratic form by grouping.\newlineStep Calculation: The polynomial does not have a clear quadratic form, but we can try to group terms to see if a pattern emerges.\newlineStep Output: No clear quadratic form.
  3. Group Terms: Step Title: Group Terms\newlineConcise Step Description: Group terms to see if a pattern emerges that can be factored.\newlineStep Calculation: Group the terms as (16k3+8k2)+(2k+1)(16k^3 + 8k^2) + (2k + 1).\newlineStep Output: Grouped terms: (16k3+8k2)(16k^3 + 8k^2) and (2k+1)(2k + 1).
  4. Factor by Grouping: Step Title: Factor by Grouping\newlineConcise Step Description: Factor out the common factors in each group.\newlineStep Calculation: In the first group, factor out 8k28k^2, resulting in 8k2(2k+1)8k^2(2k + 1). The second group is already in the form (2k+1)(2k + 1).\newlineStep Output: Factored groups: 8k2(2k+1)8k^2(2k + 1) and (2k+1)(2k + 1).
  5. Factor Out Binomial: Step Title: Factor Out the Common Binomial\newlineConcise Step Description: Factor out the common binomial from the factored groups.\newlineStep Calculation: The common binomial is (2k+1)(2k + 1), so factor it out from both groups.\newlineStep Output: Factored polynomial: (2k+1)(8k2+1)(2k + 1)(8k^2 + 1).