Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=(x-8)^(2)-9
At what values of 
x does the graph of the function intersect the 
x-axis?
Choose 1 answer:
(A) 
x=-11,x=5
(B) 
x=11,x=5
(c) 
x=11,x=-5
(D) 
f(x) does not intersect the 
x-axis.

f(x)=(x8)29 f(x)=(x-8)^{2}-9 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=11,x=5 x=-11, x=5 \newline(B) x=11,x=5 x=11, x=5 \newline(C) x=11,x=5 x=11, x=-5 \newline(D) f(x) f(x) does not intersect the x x -axis.

Full solution

Q. f(x)=(x8)29 f(x)=(x-8)^{2}-9 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=11,x=5 x=-11, x=5 \newline(B) x=11,x=5 x=11, x=5 \newline(C) x=11,x=5 x=11, x=-5 \newline(D) f(x) f(x) does not intersect the x x -axis.
  1. Set equation to zero: To find the x-intercepts of the function, we need to set f(x)f(x) to zero and solve for xx.\newlineSo, we set the equation (x8)29=0(x-8)^2 - 9 = 0.
  2. Isolate squared term: Now we solve the equation (x8)29=0(x-8)^2 - 9 = 0 by adding 99 to both sides to isolate the squared term.\newline(x8)2=9(x-8)^2 = 9
  3. Take square root: Next, we take the square root of both sides of the equation to solve for x. \newlinex8=±9x - 8 = \pm\sqrt{9}
  4. Two solutions for x: Since the square root of 99 is 33, we have two solutions for xx: \newlinex8=3 or x8=3x - 8 = 3 \text{ or } x - 8 = -3
  5. Solve for x: Solving the first equation x8=3x - 8 = 3 for xx gives us:\newlinex=3+8x = 3 + 8\newlinex=11x = 11
  6. Solve for x: Solving the second equation x8=3x - 8 = -3 for xx gives us:\newlinex=3+8x = -3 + 8\newlinex=5x = 5
  7. Intersect x-axis: We have found two x-values where the graph of the function intersects the x-axis: x=11x = 11 and x=5x = 5.\newlineThese correspond to choice (B)(B).

More problems from Domain and range of quadratic functions: equations