Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=(x+6)^(2)-49
At what values of 
x does the graph of the function intersect the 
x-axis?
Choose 1 answer:
(A) 
x=1,x=13
(B) 
x=-1,x=-13
(C) 
x=1,x=-13
(D) 
f(x) does not intersect the 
x-axis.

f(x)=(x+6)249 f(x)=(x+6)^{2}-49 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=1,x=13 x=1, x=13 \newline(B) x=1,x=13 x=-1, x=-13 \newline(C) x=1,x=13 x=1, x=-13 \newline(D) f(x) f(x) does not intersect the x x -axis.

Full solution

Q. f(x)=(x+6)249 f(x)=(x+6)^{2}-49 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=1,x=13 x=1, x=13 \newline(B) x=1,x=13 x=-1, x=-13 \newline(C) x=1,x=13 x=1, x=-13 \newline(D) f(x) f(x) does not intersect the x x -axis.
  1. Set f(x)f(x) to zero: To find the x-intercepts of the function, we need to set f(x)f(x) to zero and solve for xx.\newlinef(x)=(x+6)249=0f(x) = (x+6)^2 - 49 = 0
  2. Factor and solve: Now we solve the equation (x+6)249=0(x+6)^2 - 49 = 0 by factoring it as a difference of squares.(x+6+7)(x+67)=0(x+6+7)(x+6-7) = 0(x+13)(x1)=0(x+13)(x-1) = 0
  3. Solve for x: We have two factors, so we set each factor equal to zero and solve for x.\newlinex+13=0x+13 = 0 or x1=0x-1 = 0
  4. {

More problems from Domain and range of quadratic functions: equations