Q. f(x)=x4+4x3−7x2−22x+24The function f is shown. If x+3 is a factor of f, what is the value of f(−3) ?Choose 1 answer:(A) −3(B) 0(C) 3(D) 24
Factor Theorem Application: If x+3 is a factor of f(x), then by the Factor Theorem, f(−3) should be equal to 0. We will substitute x=−3 into the polynomial to verify this.Calculation: f(−3)=(−3)4+4∗(−3)3−7∗(−3)2−22∗(−3)+24=81−108−63+66+24=81−108−63+90=81−171+90=−90+90$= \(0\)