Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=(x+4)^(2)-25
At what values of 
x does the graph of the function intersect the 
x-axis?
Choose 1 answer:
(A) 
x=1,x=-9
(B) 
x=1,x=9
(c) 
x=-1,x=-9
(D) 
f(x) does not intersect the 
x-axis.

f(x)=(x+4)225 f(x)=(x+4)^{2}-25 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=1,x=9 x=1, x=-9 \newline(B) x=1,x=9 x=1, x=9 \newline(C) x=1,x=9 x=-1, x=-9 \newline(D) f(x) f(x) does not intersect the x x -axis.

Full solution

Q. f(x)=(x+4)225 f(x)=(x+4)^{2}-25 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=1,x=9 x=1, x=-9 \newline(B) x=1,x=9 x=1, x=9 \newline(C) x=1,x=9 x=-1, x=-9 \newline(D) f(x) f(x) does not intersect the x x -axis.
  1. Given function: We are given the function f(x)=(x+4)225f(x) = (x + 4)^2 - 25. To find the x-intercepts, we need to set f(x)f(x) to 00 and solve for xx.\newline0=(x+4)2250 = (x + 4)^2 - 25
  2. Moving 2525 to other side: Now we will solve the equation by moving 2525 to the other side of the equation.(x+4)2=25(x + 4)^2 = 25
  3. Taking square root: Next, we take the square root of both sides of the equation. Remember that taking the square root of a number yields two solutions, one positive and one negative.\newlinex+4=±25x + 4 = \pm\sqrt{25}
  4. Positive root: Since the square root of 2525 is 55, we have:\newlinex+4=±5x + 4 = \pm 5
  5. Negative root: Now we will solve for x x by creating two separate equations, one for the positive root and one for the negative root.\newlineFor the positive root:\newlinex+4=5 x + 4 = 5 \newlinex=54 x = 5 - 4 \newlinex=1 x = 1
  6. Solving for positive root: For the negative root:\newlinex+4=5x + 4 = -5\newlinex=54x = -5 - 4\newlinex=9x = -9

More problems from Domain and range of quadratic functions: equations