Q. The function f(x)=2x5+x4−18x3−17x2+20x+12 is shown. If x−3 is a factor of f, what is the value of f(3)?
Understand Relationship: Understand the relationship between factors and function values.If x−3 is a factor of the function f(x), then f(3) must be equal to 0, because when x=3, the factor x−3 becomes zero, and anything multiplied by zero is zero.
Substitute x=3: Substitute x=3 into the function f(x) to find f(3). f(x)=2x5+x4−18x3−17x2+20x+12 f(3)=2(3)5+(3)4−18(3)3−17(3)2+20(3)+12
Calculate f(3): Calculate the value of f(3). f(3)=2(243)+(81)−18(27)−17(9)+20(3)+12 f(3)=486+81−486−153+60+12
Simplify Expression: Simplify the expression to find the final value of f(3).f(3)=486+81−486−153+60+12f(3)=0+81−153+60+12f(3)=81−153+60+12f(3)=−72+60+12f(3)=−12+12f(3)=0
More problems from Transformations of absolute value functions