Q. f(x)=2x5+x4−18x3−17x2+20x+12The function f is shown. If x−3 is a factor of f, what is the value of f(3) ?
Verify Factor Theorem: If x−3 is a factor of f(x), then by the Factor Theorem, f(3) should equal 0. Let's calculate f(3) to verify this. f(3)=2(3)5+(3)4−18(3)3−17(3)2+20(3)+12
Calculate f(3): Now, let's perform the calculations step by step.f(3)=2(243)+81−18(27)−17(9)+60+12
Perform Step by Step Calculations: Simplify the terms.f(3)=486+81−486−153+60+12
Simplify Terms: Combine like terms.f(3)=486−486+81−153+60+12
Combine Like Terms: Further simplifying, we get:f(3)=0+81−153+60+12
Further Simplify: Finally, we add up the remaining terms.f(3)=81−153+60+12f(3)=−72+60+12f(3)=−12+12f(3)=0