Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(n)=41-5n
Complete the recursive formula of 
f(n).

{:[f(1)=],[f(n)=f(n-1)+]:}

f(n)=415n f(n)=41-5 n \newlineComplete the recursive formula of f(n) f(n) .\newlinef(1)=f(n)=f(n1)+ \begin{array}{l} f(1)=\square \\ f(n)=f(n-1)+ \end{array}

Full solution

Q. f(n)=415n f(n)=41-5 n \newlineComplete the recursive formula of f(n) f(n) .\newlinef(1)=f(n)=f(n1)+ \begin{array}{l} f(1)=\square \\ f(n)=f(n-1)+ \end{array}
  1. Write Explicit Formulas: To find the recursive formula for the sequence, we need to express f(n)f(n) in terms of f(n1)f(n-1). Let's start by writing down the explicit formula for f(n)f(n) and f(n1)f(n-1).\newlinef(n)=415nf(n) = 41 - 5n\newlinef(n1)=415(n1)f(n-1) = 41 - 5(n-1)
  2. Simplify Expression: Now, let's simplify the expression for f(n1)f(n-1) to see the relationship between f(n)f(n) and f(n1)f(n-1).
    f(n1)=415(n1)f(n-1) = 41 - 5(n-1)
    f(n1)=415n+5f(n-1) = 41 - 5n + 5
    f(n1)=(415n)+5f(n-1) = (41 - 5n) + 5
    f(n1)=f(n)+5f(n-1) = f(n) + 5
  3. Rearrange Equation: We can now rearrange the equation to solve for f(n)f(n) in terms of f(n1)f(n-1).
    f(n)=f(n1)5f(n) = f(n-1) - 5
    This is the recursive formula for the sequence.

More problems from Write a formula for an arithmetic sequence