Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express 
z_(1)=6+2sqrt3i in polar form.
Express your answer in exact terms, using degrees, where your angle is between 
0^(@) and 
360^(@), inclusive.

z_(1)=

Express z1=6+23i z_{1}=6+2 \sqrt{3} i in polar form.\newlineExpress your answer in exact terms, using degrees, where your angle is between 0 0^{\circ} and 360 360^{\circ} , inclusive.\newlinez1= z_{1}=

Full solution

Q. Express z1=6+23i z_{1}=6+2 \sqrt{3} i in polar form.\newlineExpress your answer in exact terms, using degrees, where your angle is between 0 0^{\circ} and 360 360^{\circ} , inclusive.\newlinez1= z_{1}=
  1. Identify rectangular coordinates: Identify the rectangular coordinates of the complex number.\newlineThe complex number z1=6+23i z_1 = 6 + 2\sqrt{3}i has a real part (x-coordinate) of 66 and an imaginary part (y-coordinate) of 23 2\sqrt{3} .
  2. Calculate magnitude: Calculate the magnitude (r) of the complex number.\newlineThe magnitude is given by r=x2+y2 r = \sqrt{x^2 + y^2} .\newlineFor z1 z_1 , r=62+(23)2 r = \sqrt{6^2 + (2\sqrt{3})^2} .\newliner=36+12 r = \sqrt{36 + 12} .\newliner=48 r = \sqrt{48} .\newliner=43 r = 4\sqrt{3} .
  3. Calculate argument in radians: Calculate the argument (θ) of the complex number in radians.\newlineThe argument is given by θ=arctan(yx) \theta = \arctan\left(\frac{y}{x}\right) .\newlineFor z1 z_1 , θ=arctan(236) \theta = \arctan\left(\frac{2\sqrt{3}}{6}\right) .\newlineθ=arctan(33) \theta = \arctan\left(\frac{\sqrt{3}}{3}\right) .\newlineSince arctan(33) \arctan\left(\frac{\sqrt{3}}{3}\right) corresponds to π6 \frac{\pi}{6} radians, we have θ=π6 \theta = \frac{\pi}{6} .
  4. Convert argument to degrees: Convert the argument from radians to degrees.\newlineθ \theta in degrees is given by θdeg=θ×180π \theta_{deg} = \theta \times \frac{180}{\pi} .\newlineFor z1 z_1 , θdeg=π6×180π \theta_{deg} = \frac{\pi}{6} \times \frac{180}{\pi} .\newlineθdeg=30 \theta_{deg} = 30^{\circ} .
  5. Express in polar form: Express the complex number in polar form.\newlineThe polar form of a complex number is given by r(cos(θ)+isin(θ)) r(\cos(\theta) + i\sin(\theta)) .\newlineFor z1 z_1 , the polar form is 43(cos(30)+isin(30)) 4\sqrt{3}(\cos(30^{\circ}) + i\sin(30^{\circ})) .

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity