Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.

log_(7)(7^(w^(2)))
Answer:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newlinelog7(7w2) \log _{7}\left(7^{w^{2}}\right) \newlineAnswer:

Full solution

Q. Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newlinelog7(7w2) \log _{7}\left(7^{w^{2}}\right) \newlineAnswer:
  1. Recognize Property: Recognize the logarithmic property that allows simplification of the expression log7(7w2)\log_{7}(7^{w^{2}}). The property states that logb(bx)=x\log_{b}(b^{x}) = x for any base bb and exponent xx.
  2. Apply Property: Apply the logarithmic property to the given expression.\newlineSince the base of the logarithm and the base of the exponent are the same 77, we can simplify the expression to just the exponent.\newlineTherefore, log7(7w2)=w2\log_{7}(7^{w^{2}}) = w^2.

More problems from Product property of logarithms