Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.

(8^(-(1)/(3)log_(8)27w^(3)))
Answer:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newline(813log827w3) \left(8^{-\frac{1}{3} \log _{8} 27 w^{3}}\right) \newlineAnswer:

Full solution

Q. Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newline(813log827w3) \left(8^{-\frac{1}{3} \log _{8} 27 w^{3}}\right) \newlineAnswer:
  1. Rewrite Expression: Understand the given expression and rewrite it for clarity.\newlineThe given expression is 8(13log827w3)8^{-\left(\frac{1}{3}\log_{8}27w^{3}\right)}. We need to express this without logs.
  2. Apply Power Rule: Apply the power rule of logarithms.\newlineThe power rule states that aloga(b)=ba^{\log_a(b)} = b. In this case, we have a negative exponent and a fraction, so we need to apply the rule carefully.
  3. Rewrite with Power Rule: Rewrite the expression using the power rule.\newlineThe expression 8(13)log827w38^{-\left(\frac{1}{3}\right)\log_{8}27w^{3}} can be rewritten as (8log827w3)(13)\left(8^{\log_{8}27w^{3}}\right)^{-\left(\frac{1}{3}\right)}.
  4. Simplify Inside Parentheses: Simplify the expression inside the parentheses using the power rule.\newlineSince 8log827w3=27w38^{\log_{8}27w^{3}} = 27w^{3}, we can replace the expression inside the parentheses with 27w327w^{3}.
  5. Apply Negative Exponent Rule: Apply the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. Therefore, (27w3)(13)(27w^{3})^{-\left(\frac{1}{3}\right)} becomes 1(27w3)13\frac{1}{\left(27w^{3}\right)^{\frac{1}{3}}}.
  6. Simplify Inside Parentheses: Simplify the expression inside the parentheses using the cube root.\newlineThe cube root of 27w327w^{3} is 3w3w because (3w)3=27w3(3w)^3 = 27w^{3}. So, we have 1/((3w)3)(1/3)1/((3w)^3)^{(1/3)}.
  7. Simplify with Exponents: Simplify the expression using the property of exponents.\newlineSince ((3w)3)13((3w)^3)^{\frac{1}{3}} is the same as (3w)(3w), the expression simplifies to 13w\frac{1}{3w}.

More problems from Multiplication with rational exponents