Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.

log_(6)(6^(3z^(3)))
Answer:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newlinelog6(63z3) \log _{6}\left(6^{3 z^{3}}\right) \newlineAnswer:

Full solution

Q. Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newlinelog6(63z3) \log _{6}\left(6^{3 z^{3}}\right) \newlineAnswer:
  1. Identify Property: Identify the property of logarithms that allows us to simplify log6(63z3)\log_{6}(6^{3z^{3}}). The property that we will use is the inverse property of logarithms, which states that logb(bx)=x\log_b(b^x) = x for any base bb and exponent xx.
  2. Apply Property: Apply the inverse property of logarithms to simplify the expression.\newlineSince the base of the logarithm and the base of the exponent are the same (both are 66), we can apply the inverse property to directly find the exponent.\newlineTherefore, log6(63z3)=3z3\log_{6}(6^{3z^{3}}) = 3z^{3}.

More problems from Product property of logarithms