Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.

(3^(log_(3)(4x^(3))-log_(3)(7w)))
Answer:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newline(3log3(4x3)log3(7w)) \left(3^{\log _{3}\left(4 x^{3}\right)-\log _{3}(7 w)}\right) \newlineAnswer:

Full solution

Q. Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newline(3log3(4x3)log3(7w)) \left(3^{\log _{3}\left(4 x^{3}\right)-\log _{3}(7 w)}\right) \newlineAnswer:
  1. Apply Quotient Rule: We are given the expression 3log3(4x3)log3(7w)3^{\log_{3}(4x^{3})-\log_{3}(7w)}. To simplify this expression, we will use the properties of logarithms to combine the logs into a single log expression.
  2. Combine Logs: The property of logarithms that we will use is the quotient rule, which states that logb(m)logb(n)=logb(mn)\log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right). Applying this to our expression, we get:\newlinelog3(4x3)log3(7w)=log3(4x37w)\log_{3}(4x^{3}) - \log_{3}(7w) = \log_{3}\left(\frac{4x^{3}}{7w}\right)
  3. Remove Log and Exponent: Now we have a single logarithm expression: log3(4x37w)\log_{3}\left(\frac{4x^{3}}{7w}\right). The next step is to use the property that blogb(m)=mb^{\log_b(m)} = m, where bb is the base of the logarithm and mm is the argument of the logarithm. This means we can remove the logarithm and the base 33 exponent from our expression, leaving us with the argument of the logarithm.\newline3log3(4x37w)=4x37w3^{\log_{3}\left(\frac{4x^{3}}{7w}\right)} = \frac{4x^{3}}{7w}
  4. Simplify Expression: We have now expressed the original expression without logs. The expression in its simplest form is: \newlineegin{equation}\newline\frac{44x^{33}}{77w}\newlineegin{equation}

More problems from Multiplication with rational exponents