Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.

(8^(log_(8)(6w^(3))+log_(8)(2z^(3))))
Answer:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newline(8log8(6w3)+log8(2z3)) \left(8^{\log _{8}\left(6 w^{3}\right)+\log _{8}\left(2 z^{3}\right)}\right) \newlineAnswer:

Full solution

Q. Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newline(8log8(6w3)+log8(2z3)) \left(8^{\log _{8}\left(6 w^{3}\right)+\log _{8}\left(2 z^{3}\right)}\right) \newlineAnswer:
  1. Apply Logarithm Properties: Apply the properties of logarithms to combine the log terms.\newlineThe expression given is 8log8(6w3)+log8(2z3)8^{\log_{8}(6w^{3}) + \log_{8}(2z^{3})}. According to the properties of logarithms, specifically the product rule, logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m*n), we can combine the log terms under a single log with base 88.
  2. Combine Log Terms: Combine the log terms using the product rule.\newlineUsing the product rule, we get:\newline8log8(6w32z3)8^{\log_{8}(6w^{3} \cdot 2z^{3})}
  3. Simplify Inside Log: Simplify the expression inside the log.\newlineNow we multiply the terms inside the log:\newline6w3×2z3=12w3z36w^{3} \times 2z^{3} = 12w^{3}z^{3}\newlineSo the expression becomes:\newline8log8(12w3z3)8^{\log_{8}(12w^{3}z^{3})}
  4. Apply Property of Logarithms: Apply the property of logarithms that blogb(x)=xb^{\log_b(x)} = x. According to this property, since the base of the log and the base of the exponent are the same, the expression simplifies to the argument of the log: 8log8(12w3z3)=12w3z38^{\log_{8}(12w^{3}z^{3})} = 12w^{3}z^{3}

More problems from Multiplication with rational exponents