Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form using only positive exponents.

((2y^(4))^(2))/(4y)
Answer:

Express the following fraction in simplest form using only positive exponents.\newline(2y4)24y \frac{\left(2 y^{4}\right)^{2}}{4 y} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form using only positive exponents.\newline(2y4)24y \frac{\left(2 y^{4}\right)^{2}}{4 y} \newlineAnswer:
  1. Identify Given Expression: Write down the given expression and identify the properties of exponents that can be applied.\newlineThe given expression is (2y4)24y\frac{(2y^{4})^{2}}{4y}. We can apply the power of a power property for the numerator and the quotient of powers property for the denominator.
  2. Apply Power of Power: Apply the power of a power property to the numerator.\newline(2y4)2=22×(y4)2(2y^{4})^{2} = 2^{2} \times (y^{4})^{2}\newlineUsing the power of a power property, we multiply the exponents for yy.\newline=4×y4×2= 4 \times y^{4\times2}\newline=4×y8= 4 \times y^{8}
  3. Simplify Denominator: Simplify the denominator.\newlineThe denominator is 4y4y, which can be written as 4×y14 \times y^{1} to make the exponents explicit.
  4. Divide Numerator by Denominator: Divide the numerator by the denominator.\newlineNow we divide 4y84 \cdot y^{8} by 4y14 \cdot y^{1}.\newline(4y8)/(4y1)=(4/4)(y8/y1)(4 \cdot y^{8}) / (4 \cdot y^{1}) = (4/4) \cdot (y^{8}/y^{1})
  5. Simplify Fraction: Simplify the fraction. \newline44\frac{4}{4} simplifies to 11, and using the quotient of powers property, we subtract the exponents for yy. \newline1×y81=y71 \times y^{8-1} = y^{7}
  6. Write Final Expression: Write the final simplified expression.\newlineThe expression in simplest form using only positive exponents is y7y^{7}.

More problems from Multiplication with rational exponents