Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form using only positive exponents.

(3k)/((3k^(4))^(5))
Answer:

Express the following fraction in simplest form using only positive exponents.\newline3k(3k4)5 \frac{3 k}{\left(3 k^{4}\right)^{5}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form using only positive exponents.\newline3k(3k4)5 \frac{3 k}{\left(3 k^{4}\right)^{5}} \newlineAnswer:
  1. Write & Apply Power Rule: Write down the given expression and apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^{m})^{n} = a^{m*n}. We will apply this rule to the denominator of the given fraction.\newline3k(3k4)5\frac{3k}{(3k^{4})^{5}}
  2. Simplify Denominator: Apply the power of a power rule to the denominator.\newline(3k4)5=35×k4×5=35×k20(3k^{4})^{5} = 3^{5} \times k^{4\times5} = 3^{5} \times k^{20}\newlineNow, rewrite the original expression with the simplified denominator.\newline3k35×k20\frac{3k}{3^{5} \times k^{20}}
  3. Divide Common Terms: Simplify the fraction by dividing both the numerator and the denominator by the common terms.\newlineThe term 3k3k in the numerator can be divided by 33, and kk can be divided by k20k^{20}.\newline3k35k20=335kk20\frac{3k}{3^5 \cdot k^{20}} = \frac{3}{3^5} \cdot \frac{k}{k^{20}}
  4. Further Simplify Terms: Simplify the terms further.\newline(335)=3(15)=34(\frac{3}{3^5}) = 3^{(1-5)} = 3^{-4}\newline(kk20)=k(120)=k19(\frac{k}{k^{20}}) = k^{(1-20)} = k^{-19}\newlineNow, combine the simplified terms.\newline34k193^{-4} \cdot k^{-19}
  5. Reciprocal of Negative Exponents: Since we need to express the answer with only positive exponents, we will take the reciprocal of the terms with negative exponents.\newline34=1343^{-4} = \frac{1}{3^4}\newlinek19=1k19k^{-19} = \frac{1}{k^{19}}\newlineNow, write the expression with positive exponents.\newline134k19\frac{1}{3^4 \cdot k^{19}}
  6. Final Simplified Expression: Write the final simplified expression.\newlineThe final simplified form of the given fraction is:\newline134k19\frac{1}{3^4 \cdot k^{19}}

More problems from Multiplication with rational exponents