Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form using only positive exponents.

(2(q^(5))^(3))/(10q^(10))
Answer:

Express the following fraction in simplest form using only positive exponents.\newline2(q5)310q10 \frac{2\left(q^{5}\right)^{3}}{10 q^{10}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form using only positive exponents.\newline2(q5)310q10 \frac{2\left(q^{5}\right)^{3}}{10 q^{10}} \newlineAnswer:
  1. Apply Power of Power Rule: Simplify the numerator using the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^m)^n = a^{m*n}. We apply this rule to the numerator.\newline(2(q5)3)=2×(q53)=2×q15(2(q^{5})^{3}) = 2 \times (q^{5*3}) = 2 \times q^{15}
  2. Divide Numerator by Denominator: Simplify the fraction by dividing the numerator by the denominator.\newlineWe have the fraction (2q15)/(10q10)(2 \cdot q^{15}) / (10 \cdot q^{10}). To simplify, we divide both the coefficients (2/10)(2/10) and the qq terms (q15/q10)(q^{15}/q^{10}).\newline(2/10)(2/10) simplifies to 1/51/5, since 22 and 1010 have a common factor of 22.\newline(q15/q10)(q^{15}/q^{10}) simplifies to (2/10)(2/10)00, using the quotient of powers rule which states that (2/10)(2/10)11 when (2/10)(2/10)22.
  3. Write Final Simplified Fraction: Write the simplified fraction.\newlineAfter simplifying both parts, we combine them to get the final simplified fraction.\newline(15)q5(\frac{1}{5}) \cdot q^5

More problems from Multiplication with rational exponents