Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form using only positive exponents.

(2h^(5))/((3h^(2))^(2))
Answer:

Express the following fraction in simplest form using only positive exponents.\newline2h5(3h2)2 \frac{2 h^{5}}{\left(3 h^{2}\right)^{2}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form using only positive exponents.\newline2h5(3h2)2 \frac{2 h^{5}}{\left(3 h^{2}\right)^{2}} \newlineAnswer:
  1. Simplify Denominator: Simplify the denominator.\newlineThe denominator is (3h2)2(3h^{2})^{2}. When raising a power to a power, you multiply the exponents.\newline(3h2)2=32×(h2)2(3h^{2})^{2} = 3^{2} \times (h^{2})^{2}\newline=9×h2×2= 9 \times h^{2\times2}\newline=9×h4= 9 \times h^{4}
  2. Write Fraction: Write the fraction with the simplified denominator.\newlineNow we have the fraction as:\newline(2h59h4)(\frac{2h^{5}}{9h^{4}})
  3. Cancel Common Factors: Simplify the fraction by canceling out common factors.\newlineWe can divide both the numerator and the denominator by h4h^{4} since h4h^{4} is a common factor.\newline(2h5)/(9h4)=(2h54)/(9)(2h^{5}) / (9h^{4}) = (2h^{5-4}) / (9)\newline=(2h1)/(9)= (2h^{1}) / (9)\newline=2h/9= 2h / 9

More problems from Multiplication with rational exponents