Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form using only positive exponents.

(5c^(6))/((4c^(3))^(4))
Answer:
Submit Answer

Express the following fraction in simplest form using only positive exponents.\newline5c6(4c3)4 \frac{5 c^{6}}{\left(4 c^{3}\right)^{4}} \newlineAnswer:\newlineSubmit Answer

Full solution

Q. Express the following fraction in simplest form using only positive exponents.\newline5c6(4c3)4 \frac{5 c^{6}}{\left(4 c^{3}\right)^{4}} \newlineAnswer:\newlineSubmit Answer
  1. Simplify Denominator: Simplify the denominator.\newlineThe denominator is (4c3)4(4c^{3})^{4}. According to the power of a power rule, we multiply the exponents.\newline(4c3)4=44×(c3)4(4c^{3})^{4} = 4^{4} \times (c^{3})^{4}\newlineNow, calculate the powers.\newline44=4×4×4×4=2564^{4} = 4 \times 4 \times 4 \times 4 = 256\newline(c3)4=c3×4=c12(c^{3})^{4} = c^{3\times4} = c^{12}\newlineSo, the denominator becomes 256c12256c^{12}.
  2. Write Simplified Fraction: Write the simplified fraction.\newlineNow we have the numerator as 5c65c^{6} and the denominator as 256c12256c^{12}.\newlineThe fraction is:\newline5c6256c12\frac{5c^{6}}{256c^{12}}
  3. Cancel Common Factors: Simplify the fraction by canceling common factors.\newlineWe can divide both the numerator and the denominator by c6c^{6} since it is the highest power of cc that divides both terms.\newline(5c6)/(256c12)=(5/c6)/(256/c12)(5c^{6}) / (256c^{12}) = (5/c^{6}) / (256/c^{12})\newlineNow, subtract the exponents of cc in the numerator and denominator.\newlinec6/c12=c612=c6c^{6} / c^{12} = c^{6-12} = c^{-6}\newlineSo, the fraction simplifies to:\newline5/(256c6)5 / (256c^{-6})
  4. Express Fraction with Positive Exponents: Express the fraction using only positive exponents.\newlineTo express c6c^{-6} with a positive exponent, we take the reciprocal of c6c^{6}.\newline5256c6=5256/c6=5c6256\frac{5}{256c^{-6}} = \frac{5}{256 / c^{6}} = \frac{5c^{6}}{256}

More problems from Multiplication with rational exponents