Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form using only positive exponents.

(2m^(9))/((4m^(5))^(4))
Answer:

Express the following fraction in simplest form using only positive exponents.\newline2m9(4m5)4 \frac{2 m^{9}}{\left(4 m^{5}\right)^{4}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form using only positive exponents.\newline2m9(4m5)4 \frac{2 m^{9}}{\left(4 m^{5}\right)^{4}} \newlineAnswer:
  1. Write Expression: Write down the given expression.\newlineWe have the expression (2m9)/((4m5)4)(2m^{9})/((4m^{5})^{4}).
  2. Simplify Denominator: Simplify the denominator.\newlineThe denominator (4m5)4(4m^{5})^{4} can be simplified by raising both the base 44 and the term m5m^{5} to the power of 44.\newline(4m5)4=44×(m5)4(4m^{5})^{4} = 4^{4} \times (m^{5})^{4}\newline=256×m20= 256 \times m^{20} since 44=2564^4 = 256 and (m5)4=m5×4=m20(m^{5})^4 = m^{5\times4} = m^{20}.
  3. Rewrite with Simplified Denominator: Rewrite the expression with the simplified denominator.\newlineNow the expression becomes:\newline(2m9)/(256m20)(2m^{9}) / (256m^{20})
  4. Simplify Fraction: Simplify the fraction by dividing the coefficients and subtracting the exponents.\newlineDivide the coefficients: 2256=1128\frac{2}{256} = \frac{1}{128}\newlineSubtract the exponents of mm: m920=m11m^{9-20} = m^{-11}\newlineThe expression now is 1128×m11.\frac{1}{128} \times m^{-11}.
  5. Express Negative Exponent: Express the negative exponent as a positive exponent.\newlineSince we want only positive exponents, we can write m11m^{-11} as 1/m111/m^{11}.\newlineThe expression now is (1/128)×(1/m11)(1/128) \times (1/m^{11}).
  6. Combine Fractions: Combine the fractions.\newlineThe expression (1128)×(1m11)(\frac{1}{128}) \times (\frac{1}{m^{11}}) can be combined into a single fraction:\newline1128m11\frac{1}{128m^{11}}

More problems from Multiplication with rational exponents