Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(2q^(-1)j^(6))/((3q^(-1)j^(2))^(-1))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline2q1j6(3q1j2)1 \frac{2 q^{-1} j^{6}}{\left(3 q^{-1} j^{2}\right)^{-1}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline2q1j6(3q1j2)1 \frac{2 q^{-1} j^{6}}{\left(3 q^{-1} j^{2}\right)^{-1}} \newlineAnswer:
  1. Simplify Denominator: We start by simplifying the denominator which has a negative exponent. To do this, we flip the fraction inside the parentheses and change the negative exponent to a positive one.\newline(3q1j2)1(3q^{-1}j^{2})^{-1} becomes 31q1j23^{-1}q^{1}j^{-2}
  2. Rewrite Expression: Now we rewrite the entire expression with the simplified denominator: \newlineegin{equation}(22q^{1-1}j^{66}) * (33^{1-1}q^{11}j^{2-2})\newlineegin{equation}
  3. Multiply Terms: Next, we simplify the expression by multiplying the terms with the same base and adding their exponents: 2×31×q1+1×j622 \times 3^{-1} \times q^{-1+1} \times j^{6-2}
  4. Simplify Exponents: We simplify the exponents:\newline2×31×q0×j42 \times 3^{-1} \times q^{0} \times j^{4}\newlineSince q0q^{0} equals 11, we can remove it from the expression:\newline2×31×j42 \times 3^{-1} \times j^{4}
  5. Convert Negative Exponent: Now we convert the negative exponent for 33 to a positive exponent by writing it as a fraction:\newline2×(13)×j42 \times \left(\frac{1}{3}\right) \times j^{4}
  6. Multiply Coefficients: Finally, we multiply the coefficients (2 and 13)(2 \text{ and } \frac{1}{3}) and keep the jj term as is:\newline(21)×(13)×j4(\frac{2}{1}) \times (\frac{1}{3}) \times j^{4}
  7. Final Simplification: Perform the multiplication of the coefficients: \newline(23)×j4(\frac{2}{3}) \times j^{4}\newlineThis is the simplest form of the expression using only positive exponents.

More problems from Multiplication with rational exponents